

1. Weight	11. Strength	21. Reliability
2. Length	12. Durability	22. Accuracy
3. Area	13. Temperature	23. Harmful effects
4. Volume	14. Brightness	24. Manufacturability
5. Shape	15. Energy Spent	25. Convenience
6. Speed	16. Power	26. Reparability
7. Force	17. Waste of energy	27. Adaptability
8. Tension	18. Waste of substance	28. Complexity
9. Pressure	19. Loss of information	29. Automation
10. Stability	20. Waste of time	30. Automation
 TRIZ uses confli Conflicts/Contr 	icts in design task to get to adictions arise among abo	an inventive solution ve parameters

40 Inventive Design Principles

Inventive Design Principles of TRIZ		
8. Counterweight	19. Periodic action	
9. Prior counteraction	20. Continuity of useful action	
10. Prior action	21. Rushing through	
11. Cushion in advance	22. Convert harm into benefit	
12. Equipotentiality	23. Feedback	
13. Inversion	24. Mediator	
14. Spheroidality	25. Self-service	
15. Dynamicity	26. Copying	
16. Partial or overdone action	27. Inexpensive short-lived object	
17. Moving to new dimension	28. Replacement of mech. system	
18. Mechanical vibration	29. Use of pneumatic/hydraulics	

10 Inventive Design Principles		
Inventive/Design Principles of TRIZ		
30. Use of flexible film or thin membrane		
31. Use of porous material		
32. Change color		
33. Homogeneity		
34. Rejecting and regenerating parts		
35. Parameter Changes		
36. Phase transition		
37. Thermal expansion		
38. Use strong oxidizers	Examples for each	
39. Inert environment	TRIZ principle at:	
40. Composite materials	www.triz-journal.com	

Example continued

- Inventive Principle #35: Parameter Changes
- Change an object's aggregate state
- Change density distribution
- Change degree of flexibility, temperature
- Examples:
- Vulcanize rubber to change its flexibility and durability

- Liquid hand soap is concentrated and more viscous than bar soap at the point of use, making it easier to dispense in the correct amount and more sanitary when shared by several people

• Change the composition to a stronger metal alloy used for the can wall to increase the load bearing capacity.

Summary

- TRIZ is a systematic approach towards identification of problem and the appropriate solution
- TRIZ provides an inventor with reliable and repeatable results that do not depend on personal (psychological) issues
- It provides a means to access proven knowledge (patents)
- Step1: Identification of contradicting engineering principles
 Step2: Employing contradiction matrix to identify the
- inventive design principles to be used
 Step3: Provide inventive solutions using these design principles