

10									INT				
NO	NAME	GENDER	AGE	ML	LAP	MAP	MAP/LAP	AP/ML	LCW	MCW	MCW/LCW	LCW/LAP	MCW/MA
1	Dastra	E.	72	78.33	62.69	57.62	0.92	0.77	29.31	33.86	1.16	0.47	0.59
2	Hegde Girija	F	64	\$1.63	66.73	64.76	0.97	0.30	34.19	35.59	1.04	0.51	0.55
3	Honavar Sudha	F	70	78.27	65.35	62.19	0.95	0.81	27.87	31.51	1.13	0.43	0.51
4	KhannaNeera	F	58	69.41	56.72	52.69	0.93	0.79	24.19	26.62	1.10	0.43	0.51
5	Kotian Sunanda	F	58	67.41	51.91	48.61	0.94	0.75	21.17	22.34	1.06	0.41	0.46
6	MathurPoornima	F	71	72.73	57.45	58.52	1.02	0.30	27.51	30.05	1.09	0.48	0.51
7	Moily Shanta	F	52	74.85	61.74	58.15	0.94	0.80	26.14	31.28	1.20	0.42	0.54
8	Verule Mudrikabai	F	70	71.22	58.03	56.30	0.97	0.30	23.28	25.08	1.08	0.40	0.45
9	Paryani Ehimya	F	67	76.87	57.13	61.15	1.07	0.77	28.86	29.99	1.04	0.51	0.49
10	Punja Vasanti	F.	61	79.17	63.19	63.52	1.01	0.30	23.55	32.69	1.13	0.46	0.51
11	Rufus Muriel	F	74	80.85	60.74	57.68	0.95	0.73	25.66	26.32	1.03	0.42	0.46
12	Sharma Sushila	F	30	82.34	66.53	67.33	1.02	0.82	29.13	36.22	1.24	0.44	0.53
13	Shetty Chihayaja	F	56	78.76	63.66	68.92	1.08	0.34	27.57	32.13	1.17	0.43	0.47
14	Shetty Padmavathi	F	6.8	74.88	53.35	53.65	1.01	0.71	23.43	27.64	1.18	0.44	0.52
15	Shettyindira	F	70	78.32	64.59	71.63	1.11	0.87	26.62	33.17	1.25	0.41	0.46
16	Banerjee Uma	F	7.8	76.77	61.71	59.27	0.96	0.79	26.10	30.99	1.19	0.42	0.52
17	ParasharVibha	F	64	75.36	60.37	58.96	0.98	0.79	28.85	33.04	1.15	0.48	0.56
18	Salian Sharda	F	75	76.75	60.11	58.03	0.97	0.77	23.62	30.04	1.27	0.39	0.52
19	UshaTiku	F	63	76.04	56.37	58.59	1.04	0.76	24.94	30.70	1.23	0.44	0.52
20	Kaur Surinder	F	58	76.11	61.49	59.48	0.97	0.79	27.01	32.25	1.19	0.44	0.54
	Average	E.	66.5	76.31	60.49	59.88	0.99	0.79	26.72	30.52	1.15	0.44	0.51
1	Std. Dev.	1-	7.69	3.86	4.13	5.52	0.05	0.04	2.90	3.50	0.07	0.03	0.04
1	Min	-	52	67.41	51.91	48.61	0.92	0.71	21.17	22.34	1.03	0.39	0.45
١.	Max	1-	80	\$2.34	66.73	71.63	1.11	0.87	34.19	36.22	1.27	0.51	0.59
· ·	Malfaddeb 1001/ CH	1	26	1.81	1.92	2.5.0	0.02	0.02	1.36	1.64	0.03	0.02	0.02

Handling data (statistics)

Student t-test :

 establish basic information about entire data like mean, standard deviation, confidence interval etc.

Paired t-test :

- compare two data sets with EQUAL number of samples (n)
- compare different dimensions within the SAME population

Welch t-test :

- compare two data sets with UNEQUAL number of samples (n₁, n₂)
 compare different dimensions amongst DIFFERENT populations
- other statistical models like ANOVA etc.

Handling data (graphs) observe important / expected trends divide entire data into clusters – find local means . 80 75 70 y = 0.7917x آھ 65 60 60 **₽** 55 50 45 40 60 70 80 90 ML (mm)

Summary

- <u>Step 1</u>: ACQUIRE DATA using medical imaging technologies like CT scans
- <u>Step 2</u>: LOCATE anatomical landmarks
- <u>Step 3</u>: MEASURE distances & angles relative to the selected landmarks
- <u>Step 4</u>: TABULATE results and find important population information
- <u>Step 5</u>: Employ STATISTICAL MODELS to establish / compare data
- <u>Step 6</u>: Visualize trends and clusters GRAPHICALLY